System Level Integration for Multidisciplinary Analysis and Design Optimization
Aerospace Systems Directorate, RQ/Aerospace Vehicles Division
The basic objective of multidisciplinary design is to integrate the various disciplines that constitute the environment of aerospace vehicles. The goal of modern design is to optimize the total system rather than the individual components, permitting the conflicting requirements of the subsystems to be handled much more effectively in getting optimal solutions. Aerospace Vehicle design is a large optimization problem consisting of libraries of variables, constraints, and performance functions. By expanding and contracting these libraries, we can explore the inherent coupling between subsystems and the disciplines and their impact on system level performance. Topics of interest include (1) simultaneous design with multiple constraints; (2) structural requirements derived from strength, stiffness, and frequency considerations; (3) static and dynamic aeroelastic requirements; (4) requirements from acoustic and thermal environments; (5) linear and nonlinear aerodynamic interactions with the structure and control system; (6) tailoring of composites and other new materials; (7) shape and topology optimization; (8) development and testing of efficient optimization methods; (8) sensitivity analyses; (9) Uncertainty Quantification for Design; (10) System Modeling and Discretization for Design, (11) Multi-Fidelity Analysis for Design; and (12) Optimization of trasient systems.
Experience Supplement: Postdoctoral and Senior Associates will receive an appropriately higher stipend based on the number of years of experience past their PhD.