Testable Predictions of Superradiance and Related Dicke State Phenomena
Physical Measurement Laboratory, Quantum Measurement Division
NIST only participates in the February and August reviews.
Whereas classical electromagnetism predicts coherent phenomena in optics relating to the Einstein B coefficient (absorption and stimulated emission), Dicke (1954) also predicts that the Einstein A coefficient (spontaneous emission) is subject to modification due to coherence. Rare-earth impurity ions in a solid host are excellent systems to explore Dicke state effects. Because of the inhomogeneous bandwidth of the ionic levels, individual ions interact with a tunable density of atoms with nearly identical atomic levels. The observed homogeneous bandwidth of a given ion should depend on this density. The project will describe such phenomena in model systems (e.g., arrays of ideal two-level systems, a.k.a. qubits) as well as praseodymium-doped orthosilicate (Pr:YSO) under actual operating conditions. Our group operates a quantum memory experiment in Pr:YSO at the Joint Quantum Institute of the University of Maryland. Candidates with theoretical interest, or joint theoretical /experimental candidates are encouraged to apply.