name |
email |
phone |
|
Rachel E Carter |
rachel.c.ashmore.civ@us.navy.mil |
12024043360 |
We explore fundamental phenomenon governing battery performance across technical readiness levels. A couple of areas where postdoctoral support is required follow. 1. Diagnose complex discharge mechanisms of emerging batteries chemistries like ambient Na-S and anode-free Li-ion using unique characterization and instrumentation including: in-situ optical microscopy, in-situ spectroscopy, in-operando EXAFS, and ex-situ micro-CT and SEM. 2. Investigate the interplay of thermal and electrochemical energy. Battery charging and discharging produces heat and these behaviors are dependent on ambient environment. Build custom instrumented pouch cells and utilize novel isothermal battery calorimetry and accelerating rate calorimetry measurements.
1. Carter, R.; NewRingeisen, A.; Reed, D.; Atkinson, R.W.; Mukherjee, P.P.; Love, C.T.; Optical Microscopy Reveals the Ambient Sodium Sulfur Discharge Mechanism, ACS Sustainable Chem. Eng. 2021, 9, 1
2. Carter, R.; Kingston, T.A.; Atkinson, R.W.; Parmananda, M.; Dubarry, M.; Fear, C.; Mukherjee, P.P.; Love, C.T.; Directionality of Thermal Gradients in Li-ion Batteries Dictates Diverging Degradation Modes. Cell Reports Physical Science 2021, 2, 100351
3. Atkinson, R.W.; Kingston, T.A.; Klein, E.; NewRingeisen, A.; Carter, R.; Love, C.T.; Minimizing Lithium Deactivation during High-Rate Electroplating via Sub-Ambient Thermal Gradient Control, Materials Today Energy, 2020, 18, 100538.
in-situ, sodium-sulfur battery, alkali-plating, thermo-electrochemical, battery, li-ion battery, in-operando, calorimetry