Information Technology Laboratory, Applied and Computational Mathematics Division
NIST only participates in the February and August reviews.
Distributed quantum computing requires quantum networks that can carry flying qubits. Such networks can be used to scale up small quantum computers and enable quantum communication protocols such as blind quantum computing for certified execution of quantum algorithms. This project involves a joint theoretical-experimental effort to develop and test quantum networking infrastructure, protocols and devices to convert computational qubits such as superconducting and electrically defined quantum dot qubits to flying qubits. This opportunity is for the theoretical component of the project.
R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, Bidirectional and Efficient Conversion between Microwave and Optical Light, Nat. Phys. 10 321-326 (2014).
P. Komar, E. Kessler, M. Bishof, L. Jiang, A. S. Sorensen, J. Ye, M. Lukin, A Quantum Network of Clocks, Nat. Phys. 10 582-587 (2014).
A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfaff, M. Reagor, L. Sletten, X. Ma, R. J. Schoelkopf, E. Knill, K. W. Lehnert, Faithful Conversion of Propagating Quantum Information to Mechanical Motion, Nat. Phys. 13 1163-1167 (2017).
Quantum communication; Quantum computation; Entanglement; Flying qubits; Information theory; Optical networks; Applied mathematics; Superconducting qubits; Quantum dots; Quantum optics;