RAP opportunity at National Institute of Standards and Technology NIST
Computational Electrochemistry and Dielectric Spectroscopy
Location
Material Measurement Laboratory, Materials Science and Engineering Division
opportunity |
location |
|
50.64.21.C0513 |
Gaithersburg, MD |
NIST only participates in the February and August reviews.
Advisers
name |
email |
phone |
|
Kathleen Alice Schwarz |
kas4@nist.gov |
301.975.2821 |
Description
Understanding the intermolecular environment surrounding complex molecules, ions, electrode surfaces, and nanomaterials is crucial for industries ranging from chemical manufacturing to water desalination and emerging nanofluidics-based technologies. Despite more than a century of experimental and theoretical efforts, the properties of electrochemical interfaces remain elusive. Moreover, our current understanding of electrostatic environments in nanoscale confinement (e.g., in the vicinity of nanopores) is severely lacking. These shortcomings prevent a true function-by-design approach to development and manufacturing.
We are interested in using analytical theory, large-scale molecular dynamics (MD) simulations, and density functional theory (DFT) calculations to significantly improve the state-of-the-art theoretical understanding of electrostatic environments in liquid-phase, at solid-liquid interfaces, and in nanoscale confinement. Qualified candidates are encouraged to submit research proposals on the following topics:
- DFT and MD for computational dielectric spectroscopy
- Properties of electrochemical double layer (effects on the local polarization, structure, and capacitance)
- Electrostatic interactions in crown ethers, near metallic electrodes, and around nanopores
- Local dielectric response in nanoscale confinement
We also welcome related proposals on topics not specifically listed above.
References:
- Schwarz, K. and R. Sundararaman, The electrochemical interface in first-principles calculations. Surface Science Reports, 2020. 75(2): p. 100492.
- Stelson, A.C., et al., Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. Communications Chemistry, 2019. 2(1): p. 54.
- Smolyanitsky, A., E. Paulechka, and K. Kroenlein, Aqueous Ion Trapping and Transport in Graphene-Embedded 18-Crown-6 Ether Pores. ACS Nano, 2018. 12(7): p. 6677-6684.
key words
Simulation; Theory; Chemistry; Physics; Nanotechnology; Dielectric spectroscopy; Electrostatic environments; Interfaces; Electrochemical Double Layer; Confinement; Nanopores
Eligibility
Citizenship:
Open to U.S. citizens
Level:
Open to Postdoctoral applicants
Stipend
Base Stipend |
Travel Allotment |
Supplementation |
|
$82,764.00 |
$3,000.00 |
|
|